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Abstract—This paper presents a backtracking algorithm to 

solve the challenge of finding optimal paths in otome games, 

aiming to maximize collectible Computer Graphics (CGs) and 

reach desired endings. The algorithm utilizes a depth-first search 

strategy with effective pruning techniques. The developed 

program successfully models game narratives, optimizes for 

multiple objectives, and provides a clear step-by-step guide for 

users. The program also allows users to do simulation for the 

obtained optimal path. While demonstrating strong performance 

and guaranteeing optimal solutions, the approach faces 

limitations with exponential growth in extremely large graphs 

and its dependence on fully observable game information, 

making it less suitable for real-world games. Future work will 

focus on integrating advanced heuristic search for scalability, 

incorporating reinforcement learning for handling hidden states, 

and developing enhanced graphical visualizations for improved 

user experience. 
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I.  INTRODUCTION 

The popularity of video games has significantly increased 
over the years. This occurrence led to the emergence of 
numerous genres. One of the most popular genres nowadays is 
dating simulation games or commonly known as otome games. 
Otome games are story-driven interactive experiences typically 
targeted toward a female audience. This type of game focuses 
on building romantic relationships with various characters. 

While otome games traditionally emphasize narrative and 
character development, many modern titles incorporate diverse 
gameplay mechanics such as rhythm-based sequences, turn-
based combat, or strategy elements. A defining feature of 
otome games is their branching storyline where the player’s 
decisions determine the route, romance outcomes, and ultimate 
endings. 

A key collectible in these games is Computer Graphics 
(CGs) that represent significant story moments. However, not 
all CGs are accessible in a single playthrough. In many free-to-
play otome games, such as Mystics Messenger, players must 
make specific choices to unlock CGs whereas premium games 
like Café Enchanté often include access to all CGs once 

purchased. Furthermore, within a single route, certain choices 
may not unlock a CG whilst the other choice present will 
trigger the CG for the story. This mechanism makes a specific 
type of challenge for players to obtain or experience the CG. 
The free-to-play game gives the challenge to unlock as many 
CGs as possible while the premium otome games player will 
want to know the full story of the CG and not only look at the 
CG. It’s like giving an extra enjoyment to the game if the plater 
can get the CG in premium games. 

Community-driven wikis sometimes provide detailed 
guides to obtaining CGs and endings. But it is rather tasking to 
search for it one by one and construct it to a single path that 
will ensure the plater to get the desired ending and maximal 
CGs. This desire to experience the story and CGs while getting 
the desired ending presents an opportunity for algorithmic 
assistance. 

This paper proposes the use of a backtracking algorithm to 
explore branching narrative paths and identify an optimal 
sequence of choices that leads to a desired ending while 
unlocking as many CGs as possible. This approach assumes the 
availability of structured data about the game’s choices and 
outcomes such as those often compiled in fan-made wikis.  

II. THEORETICAL FOUNDATION 

A. Backtracking 

Backtracking is an algorithm for solving problems that 
gradually constructs potential solutions and the stops a path 
when it finds that it cannot result in a viable or ideal solution. It 
employs a depth-first search strategy, thoroughly analyzing 
each potential decision branch before going on to the next. This 
approach works particularly well for combinatorial search 
space problems like pathfinding, riddles, and constraint 
statisfication issues. 

Every narrative choice made in an otome game can be 
visualized as a branching node in a tree. Finding a route from 
the game’s start to a particular conclusion while optimizing 
collection rewards (CGs) is the goal. Backtracking enables this 
by assessing every potential course of action and going back 
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(backtracking) when the path results in an undesirable outcome 
or does not enhance the CG collection. 

Pruning is a key idea in backtracking, which is the practice 
of ignoring entire subtrees after it is determined that they 
cannot produce a better result than what has already been 
discovered. When compared to a blind, brute-force approach, 
this significantly boosts performance. 

The general features of backtracking include a recursive 
approach, incremental solution construction, abandonment of 
partial solutions upon constraint violations, and suitability for 
problems involving many decision points and outcomes. 

This is one of the many examples of pseudocode for 
backtracking algorithms. 

function backtrack(path, current_state): 

 if goal_condition_met(current_state): 

  update_best_solution(path) 

  return 

 for option in get available_choices(current_state): 

  if is_valid(option, current_state): 

      apply(option, current_state) 

      backtrack(path + [option], current_state) 

      undo(option, current_state) 

In this pseudocode, path tracks the sequence of decisions made 
so far and current_state reflects the current progress (e,g., 
affection points, CGs collected). The algorithm explores valid 
choices, recursively extends the current path and backtracks if 
necessary. 

 Use cases of backtracking are solving puzzles, finding all 
permutations or combinations, navigating game tress, and 
solving decision-based problems like narrative branching in 
games. 

 Since otome games have a decision-tress structure and 
several goals (such as maximizing CGs and reaching a specific 
conclusion), backtracking is a suitable option. However, its 
success is dependent on the capacity to specify limitations and 
optimize path evaluation to avoid unnecessary processing. 

 

B. Otome game and CGs 

A type of visual novels known as otome games focuses on 
romantic narratives told from a primarily female point of view. 
The genre is mostly intended for female viewers, hence the 

term otome (乙女) in Japanese means “maiden.”  Gamers take 

on the role of a female lead who engages with several male 
characters, each of whom stands for a distinct romantic path. 
Various tale scenarios and endings are possible since these 
pathways branch based on the decisions made by the player. 

Although romance is a major theme in the genre, the main 
draw of otome games is the opportunity to immerse oneself in 
a deep, emotional story that is influenced by the choices made 
by the player. Character connections, the plot’s trajectory, and 

the opening of special tale events are all impacted by the 
decisions made throughout the narrative. While gameplay 
elements like riddles, stat-building, or time-limited events are 
frequently added to otome games, the emotional journey and 
branching tales continue to be the primary focus. 

Computer Graphics, sometimes referred to as event CGs, 
are one of the main collectible components in otome games. A 
CG is a full-screen illustrated image that represents a 
significant plot event, like a dramatic scene, a romantic 
confession, or an emotional turning point. Players can unlock 
these CGs as rewards depending on their decisions and 
advancement. 

By providing visual representation to tale segments that 
would otherwise be text-based, CGs increase the narrative’s 
emotional impact and level of immersion. For players who are 
completionists and work to unlock the entire CG gallery the 
game offers, they also serve as collector milestones. But not 
every CG will appear in a single playthrough. Some have to do 
with particular character paths, speech options, attachment 
levels, or unspoken prerequisites that aren’t mentioned in the 
game. 

For example, in Mystic Messenger, certain CGs are only 
available if the player chooses the correct responses during 
chatroom interactions. In contrast, all CGs are accessible after 
purchase in premium games such as Café Enchanté, but players 
still have to figure out the right way to stimulate them inside 
the narrative.  

CGs are a major factor in player involvement since they act 
as both rewards and story milestones. Many players consider 
unlocking CGs to be an essential component of the ultimate 
gaming experience since it provides them with both visual 
pleasure and a feeling of accomplishment in the story. This 
makes CG acquisition an appropriate target for optimization 
with computational approaches like backtracking.  

III. IMPLEMENTATION 

The implementation of the optimal pathfinding system for 
otome games is structured into several key components, 
encompassing the story data, the core backtracking algorithm, 
the execution environment, and the presentation of results. The 
code can be fully seen in author’s GitHub under the name 
“makalah_stima”. 

A. Dummy Story Structure 

The foundational element of the program is the story. 

For the sake of implementing backtracking algorithm, the 

story is present using JSON format that are later parsed 

into Java objects. The reason for using JSON format is for 

easy modification and expansion of narrative content 

without requiring code changes. The “Mystic Messenger” 

themed story serves as the concrete example, 

demonstrating the system’s ability to navigate complex 

character-based routes and collectible elements, such as 

CGs.  

Three of Mystic Messenger’s character are being 

used for the dummy story. They’re Jumin Han, 707 
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(Seven), and Zen. There is no specific reason for choosing 

them but the author only chose three character and not all 

character exist in Mystic Messenger because three 

character is enough for demonstrating the program. 

The story_data.json file dictates the entire narrative, 

including its title, description, a collection of nodes, and 

CG description. Each node within the JSON corresponds 

to a StoryNode object, which is the fundamental unit of the 

story. A StoryNode encapsulates ‘id’, ‘title’, ‘description’, 

‘cgs’, ‘choices’, ‘isEnding’, and ‘endingType’. ‘id’ is a 

uniquie identifier for the node. For example, “start” and 

“jumin_route”. ‘title’ is a descriptive title for the scene 

(e.g., “Mystic Messenger Chat”). ‘description’ is the 

narrative text displayed to the player for that scene. ‘cgs’ is 

a list of CGs that are unlocked upon visiting this node and 

representing visual events within the game. ‘choices’ is a 

list of Choice objects. Each of it detailing an ‘id’ for user 

selection, ‘text’ for the option, and ‘destination’ for the ‘id’ 

of the next StoryNode if this choice is made. This list 

defines the branching pathways from the current node. 

‘isEnding’ is a Boolean flag indicating if the node marks 

an end to a story path. ‘endingType’ is a string that 

categorizing the type of ending reached which contributes 

the path’s overall score. 

The StoryLoader.java utility class is responsible for 

loading the story from JSON. It parses the story_data.json 

into a Story object. This Story object then holds a map of 

all StoryNode instances, making them accessible by their 

IDs. The Story class also maintains all ‘cgDescriptions’ 

and the ‘startNodeId’. 

The story is characterized by character routes, 

multiple endings, and CG acquisition. As said before, there 

are three characters that the dummy story has. Each of 

them has their own routes. The narrative is distinctly 

separated into routes for Jumin, Seven, and Zen. Each of it 

commencing from the “start” node. Each character’s route 

contains unique StoryNode sequences and choices that 

lead to different relationship progressions and outcomes. 

For the ending, the dummy story contains a total of 

10 ending nodes that categorized into various ending type. 

For Jumin’s route there are good and normal ending. For 

Seven’s route there are good, bad, normal, and secret 

ending. For Zen’s route there are good and normal ending. 

These diverse endings allow the StoryPathFinder to target 

specific narrative conclusions. 

For the CG acquisition, the author has already stated 

that CGs are one of collectible in otome game. Much more 

if it’s an otome game like Mystic Messenger. The dummy 

story gave 24 distinct CGs available across all routes. Each 

StoryNode that unlocks a CG list its ‘id’ within its ‘cgs’ 

array. The Story object stores detailed description (e.g., 

"jumin_wedding": "Beautiful wedding ceremony with 

Jumin”). This enrich the context of each collected artwork. 

The program ensures that CGs are only counted once per 

path even if a node is visited multiple times within a cycle 

prevention context. 

B. Algorithm Design 

The core intelligence of the program resides in the 

StoryPathFinder class that implements a backtracking 

algorithm to identify optimal narrative paths based on 

user-defined criteria (primarily maximizing CG collection 

for a desired ending). 

The pseudocode for backtracking is the one that 

already mention in the theoretical foundation. In the 

context of the StoryPathFinder.java implementation, ‘path’ 

corresponds to a StoryPath object which dynamically 

stores the ‘nodeSequence’ and ‘choiceSequence’ taken so 

far and the ‘current_state’ implicitly includes the current 

StoryNode (‘currentNodeId), the ‘collectedCgs within the 

StoryPath, and the ‘visitedInPath’ set used for cycle 

detection. ‘goal_condition_met’ is satisfied when 

‘currentNode.isEnding()’ is true. ‘update_best_solution’ 

involves adding the ‘completePath’ to the ‘allPaths’ list for 

later sorting and selection. “get_available_choices’ is 

‘currentNode.getChoices()’. ‘is_valid(option, 

current_state)’ is checked by 

‘!visitedInPath.contains(nextNodeId)’ for ensuring no 

cycles are formed within a single path. ‘apply(option, 

current_state)’ is impliciyly handle by Java’s call stack and 

the creation of new ArrayList and HashSet objects when 

extending the path for preventing modifications to 

previous states. 

The backtrack method in StoryPathFinder initiates a 

Depth-First Search (DFS) from the story’s start node 

(‘story.getStartNodeId()’). For each ‘currentNode’, it 

iterates through all its ‘choices’. For every choice, it 

identifies the ‘nextNodeId’.  

A crucial aspect is the ‘visitedInPath’ HashSet. 

Before traversing to ‘nextNodeId’, the algorithm checks if 

‘nextNodeId’ has already been visited in path within the 

‘currentPath’. If not, a ‘newVisited’ set is created, copying 

the current ‘visitedInPath’ and adding ‘currentNodeId’. 

Then, the backtrack method is recursively called with the 

‘nextNodeId’ and the updated path state. This effectively 

prunes paths that would otherwise enter infinite loops and 

ensuring termination and efficiency. 

For the CGs and endings tracking, the program has a 

part for that too. The StoryPath class serves as a mutable 

record of a single traversal through the story. It sorts the 

‘nodeSequence’, ‘choiceSequence’ and ‘collectedCgs’. 

When the backtrack method processes a ‘currentNode’, it 

creates an ‘extendedPath’ by calling 

‘cuurentPath.extend(currentNodeId, null, 

currentNode.getCgs()). This method in StoryPath adds the 

‘currentNodeId’ to the ‘nodeSequence’ and ‘addAll’ new 

CGs from the ‘currentNode’ to the ‘collectedCgs’ set. This 

effectively tracking all CGs acquired along the path. If a 

‘currentNode’ is an ending node, the ‘extendedPath’ is 

marked complete by calling 

‘extendedPath.complete(currenNode.getEndingType())’. 

This ‘complete’ method sets the ‘isComplete’ flag to true 

and records the ‘endingType’ for the path. All 

‘compltePath’ objects are then added to the ‘allPaths’ list 
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within the ‘StoryPathFinder’, which holds all valid 

narrative conclusions discovered during the search. 

There are also scoring system in the program. Once 

all possible paths to a target ending are found, the 

‘selectedBestPath’ or ‘selectedBestPathToSpecificEnding’ 

method ranks them based on a defined scoring system. 

There are base score and ending bonus. Base score is 

collected from collected CG which contributes 10 points 

while ending bonus are awarded based on the ending type.   

 

C. Tools and Execution 

The entire application is develop using Java and 

designed to run as a command-line interface (CLI) 

application. This happens cause the program prioritizing 

accessibility and ease of use without complex graphical 

dependencies.  

The program is built using Java and require Java 11 

or higher for compilation and execution. The project 

structure is organized into packages for modularity and 

maintainability as it is made using object-oriented program 

concept. The user application which is entirely menu-

driven within console is being made possible through 

StoryApplication.java as the main entry point. It present 

users with a main menu that offer two modes. Mode 1 is 

for finding optimal path for a desired ending with maximal 

CG obtain using backtracking and mode 2 is playing a 

simulation. Of course, there’s option for exiting the 

program too. 

Mode 1 is used with calling ‘findOptimalPathMode’. 

Users can select a character and a specific ending that they 

want. The program dynamically lists the available endings 

by filtering StoryNode Ids. Once selections are made, the 

StoryPathFinder is invoked to fins the optimal path for that 

specific ending. 

Mode 2 allows users to experience the dummy story 

made for this paper. It offers three options, interactive 

optimal mode, auto mode, and free exploration mode. Free 

exploration mode will happen if there are no optimal path 

found. This can happen if the user has yet to do mode 1 to 

find an optimal path for a specific ending. Free exploration 

mode allows users to make their own choices without 

guidance to experience the story organically and seeing 

where their decisions lead. This represents a normal 

gameplay of an otome game. Interactive optimal mode can 

be used when users has already used the program to find 

an optimal path (invoking the mode 1). The program then 

will save the path find and use it for interactive optimal 

mode and auto mode. In interactive optimal mode, user can 

freely make choices with the optimal choice for the current 

scene is highlighted. This provides guidance while 

allowing player agency. There are notes for this mode. 

Users can choose that freely. The program will lead the 

users to the optimal path because the purpose of this mode 

is for the users to see it more clearly about the choice 

being made. The last mode, auto mode, allows program to 

automatically play through the last found optimal path 

with optional delays between scenes for a more narrative 

experience. The ‘previewPath’ method provides a quick 

overview of the route before full simulation. 

Although console based, the StoryPathSimulator and 

StoryApplication utilze ANSI escape codes for basic test 

formatting, including colors and bolding to enhance 

readability and highlight important information. Scene 

content, CG collection notifications, and choice displays 

are dynamically rendered to provide an immersive textual 

experience. 

D. Output and Results 

The program provides detailed outputs for both 

optimal pathfinding and simulation, offering insight into 

the game’s structure and the algorithm’s performance. 

These detailed outputs not only guide the user but also 

provide valuable analytical data for game designers or 

researchers studying narrative structures and player 

engagement. 

When an optimal path is found, the program presents 

it in a clear step-by-step format. Path summary includes 

the overall score, CGs collected, number of scenes/nodes 

(length), and ending type. Optimal route includes each step 

that clearly shows the step number, the node title, and the 

choose action with the exact text of the optimal choice to 

make. This serves as a direct guide for users. Collected 

CGs part is a comprehensive sorted list of all cg IDs and 

their description collected along that specific optimal route 

is presented at the end. Result part is a concluding message 

confirms that this is the best path for users chosen 

character and ending. 

Beyond just the optimal path, the program offers in-

depth statistics about the backtracking process and the 

overall story structure.  Search performance part reposts 

the total path the backtracking algorithm explored and the 

complete path found. This provides a direct measure of the 

algorithm’s workload and the complexity of the narrative 

graph. The path statistics part is for calculating and 

displaying the minimum and maximum scores achieved 

across all paths, the average score of all complete paths, 

the average number of CGs collected per path, and the 

average number of nodes traversed in a path. Top paths by 

score part is for listing the top 3 or fewer if less than three 

paths are found by their score, along with their collected 

CGs and ending type. Ending type distribution part is to 

provide a count of how many paths leads to each ending 

type. This offer insights into the prevalence of different 

outcomes in the story. Lastly, the CG collection frequency 

part is for analyzing how frequently each individual CG is 

collected across all explored paths, sorted by frequency. 

This can indicate how common or rare certain CGs are to 

obtain through typical playthroughs.  

 

IV. ANALYSIS 

This section will evaluate the performance and applicability 
of the backtracking algorithm within the context of otome 
game pathfinding. It will also compare with a different search 
algorithm to make the analysis more pronounced. 
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Backtracking proves to be a well0suited and generally 
efficient algorithm for solving the optimal pathfinding problem 
in otome game. This is primarily due to the structured nature of 
branching narratives. The problem can be naturally modeled as 
finding a path in a directed acyclic graph (DAG) or a graph 
where cycles are explicitly managed.  

With their numerous decision points and multiple 
outcomes, otome games generate a large combinatorial search 
space. As a systematic way to explore all possible 
configurations, backtracking is inherently designed for such 
problems. It incrementally builds a solution and if partial 
solution cannot lead to a viable of optimal complete solution, it 
backs out or prunes that branch.  

A key factor contributing to its efficiency is the 
implementation of pruning strategies. In this system, pruning is 
achieved primarily through cycle prevention and goal-directed 
search. The ‘visitedInPath’ set withing the backtrack method 
ensures that the algorithm does not revisit a node within the 
same path. This prevents inifinite loops in cyclic graphs and 
dramtically redus redundant explorations, ensuring that each 
explored path is unique and finite. For the goal-directed search, 
it is done with invoking 
‘findOptimalPathToSpecificEnding(targetEndingNodeID)’. 
With that method being invoke, the algorithm prioritizes paths 
leading to a designed target ending node id. Any path that 
reaches and ending node that is not the target ending node id is 
immediately terminated within the backtrack method. This 
effectively prunes entire subtrees that cannot lead to the desired 
outcome, significantly narrowing the search space compared to 
a general pathfinding algorithm that seeks any ending. 

For the sample/dummy story, which has 33 nodes and 24 
CGs, the backtracking algorithm quickly identifies the optimal 
path. The detailed algorithm analysis outputs the total path 
explores and complete paths found. While a specific numerical 
output is dynamic based on execution, these metrics 
demonstrate that the algorithm systematically explores the 
necessary branches without becoming overwhelmed, finding 
the best path based on the defined scoring system. The clear 
and logical structures of decisions in typical otome games 
makes backtracking a feasible and effective choice.  

While efficient for well-structured problems, backtracking 
faces inherent challenges when the complexity of the problem 
space increases. In a theoretical worst-case scenario, if every 
node has a high branching factor or many choices and paths are 
very long, the number of possible paths can grow 
exponentially. If the story graph were extremely dense with 
many valid paths between any two nodes, an exhaustive search 
might become computationally prohibitive. This is a 
characteristic of many combinatorial search problems. There is 
also a factor of branching factor (the number of choices per 
StoryNode) and number of nodes in a path. If those increase, it 
can lead to a significant increase in the number of 
‘exploredPaths’.  

Fortunately, real-world otome games with hundreds of 
nodes, rarely exhibit truly “worst-case” graph structures. They 
often segment narratives into character-specific routes which 
naturally partitions the larger graph into smaller more 
manageable sub-graphs. Current implementation leverages this 

by allowing users to select a character before searching for an 
ending type. This implicitly reduces the initial search scope to a 
character’s specific route. 

The cycle mechanism remains crucial for scalability as it 
ensures that the algorithm does not waste resources on 
redundant cyclic paths. This could otherwise lead to non-
terminating searches in games with loops. The goal-directed 
pruning also ensures that only paths relevant to the target 
ending node are fully explored. These pruning techniques help 
to keep the practical performance within reasonable limits for 
typical game sizes but they cannot entirely overcome the 
exponential nature if the game’s decision tree truly explodes in 
complexity. 

The current backtracking model also assumes complete and 
explicit knowledge of the story’s structure, choices, and 
outcomes, as provided in the JSON file. This is often an 
oversimplification for many otome games. Real-world otome 
games frequently incorporate hidden conditions or internal 
states that are not immediately visible to the player or easily 
extractable from a simple node-and-choice structure. These can 
include affection points, event flags, dynamic choice 
availability, and randomness which would make deterministic 
pathfinding impossible.  

Without knowledge of these hidden conditions, the 
backtracking algorithm would be operating on an incomplete 
representation of the game’s decision graph. It would 
potentially miss optimal paths that require specific hidden stat 
thresholds or event triggers to unlock certain crucial choices or 
CGs. To account for hidden conditions, the ‘current_state’ 
would need to be significantly enriched. Instead of just 
‘nodeSequence’ and ‘collectedCgs’, it would need to track all 
relevant affection points, time stamps, and Boolean flags. This 
would dramatically increase the size and complexity of the 
state space, making direct traversal more computationally 
intensive and memory-demanding. The most significant 
challenge would be acquiring this hidden information. Game 
files often obfuscate these internal mechanisms, requiring 
extensive reverse-engineering or relying on community-driven 
wikis that are meticulously compiled through trial-and-error 
gameplay. The current program explicitly states its assumption 
of availability of structured data about the games and choices 
outcomes. To handle hidden conditions, a more advanced 
approach might be necessary. This could involve state-space 
search, heuristic search, and reinforcement learning. 

Comparing backtracking algorithm with A* algorithm is a 
worthy exploration. A* is a best-first search (BFS) algorithm 
renowned for its efficiency in finding the shortest or lowest-
cost path in a graph. It achieves this by using a heuristic 
function to estimate the cost from the current node to the goal 
node, combining it with the actual cost from the start node to 
the current node. Applying A* to this problem would require 
defining an admissible and consistent heuristic function. For 
example, to maximize CGs, a heuristic could estimate the 
maximum possible additional CGs that can be collected from 
the current node to the target ending. For scoring, this would 
involve estimating the maximum potential score achievable 
from the current node's sub-graph. If a strong, accurate, and 
admissible heuristic can be formulated, A* could potentially 
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find the optimal path much faster than exhaustive backtracking, 
as it intelligently prioritizes the most promising branches, 
avoiding deep exploration of clearly sub-optimal paths. 

While A* offers theoretical performance advantages for 
shortest path problems, its direct application to this specific 
multi-objective optimal path problem (maximizing CGs and 
score) would require careful heuristic engineering. For a 
problem where finding the absolute optimal path is paramount 
and the graph size is manageable, backtracking offers a robust 
and reliable solution, often being simpler to implement than 
designing and validating a complex A* heuristic. The current 
backtracking approach is effective for the defined problem due 
to the clear objective function (scoring) and the ability to 
efficiently prune irrelevant branches. 

 

V. CONCLUSION 

The implemented backtracking algorithm effectively 
demonstrates its capability of identify optimal paths in 
branching narrative games like otome games, successfully 
maximizing collectible CGs and achieving desired endings 
within a character-based story structure. Its strengths lie in 
guaranteeing an optimal solution given explicit game data, its 
adaptability to various scoring objectives and the practical 
efficiency gained from crucial pruning techniques like cycle 
detection and goal-directed search. However, this approach 
faces limitations, notably its potential for exponential growth in 
extremely large or densely interconnected graphs, and a 
significant reliance on completely explicit game data, rendering 
it less effective for real-world games with hidden conditions, 
dynamic states, or unseen parameters. Future work should 
therefore focus in augmenting the program’s capabilities 
through the integration of advanced heuristic search algorithm 
like A* for improved scalability, incorporating reinforcement 
learning to navigate environments with hidden states and 
partial observability and developing enhanced graphical 
visualizations for a more intuitive user experience and deeper 
narrative analysis. 
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